Leveraging Behavioral and Social Information for Weakly Supervised Collective Classification of Political Discourse on Twitter

نویسندگان

  • Kristen Johnson
  • Di Jin
  • Dan Goldwasser
چکیده

Framing is a political strategy in which politicians carefully word their statements in order to control public perception of issues. Previous works exploring political framing typically analyze frame usage in longer texts, such as congressional speeches. We present a collection of weakly supervised models which harness collective classification to predict the frames used in political discourse on the microblogging platform, Twitter. Our global probabilistic models show that by combining both lexical features of tweets and network-based behavioral features of Twitter, we are able to increase the average, unsupervised F1 score by 21.52 points over a lexical baseline alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks

The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...

متن کامل

"All I know about politics is what I read in Twitter": Weakly Supervised Models for Extracting Politicians' Stances From Twitter

During the 2016 United States presidential election, politicians have increasingly used Twitter to express their beliefs, stances on current political issues, and reactions concerning national and international events. Given the limited length of tweets and the scrutiny politicians face for what they choose or neglect to say, they must craft and time their tweets carefully. The content and deli...

متن کامل

Determining the Presence of Political Parties in Social Circles

We derive the political climate of the social circles of Twitter users using a weakly-supervised approach. By applying random walks over a sub-sample of Twitter’s social graph we infer a distribution indicating the presence of eight Flemish political parties in users’ social circles in the months before the 2014 elections. The graph structure is induced through a combination of connection and r...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

A Machine Learning Approach to Twitter User Classification

This paper addresses the task of user classification in social media, with an application to Twitter. We automatically infer the values of user attributes such as political orientation or ethnicity by leveraging observable information such as the user behavior, network structure and the linguistic content of the user’s Twitter feed. We employ a machine learning approach which relies on a compre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017